Micro Processor Temperature Controller

微電腦溫度控制器 使用說明書

三、鍵盤操作

如何設定SV值(範例由0 調整到250)									
說	明								
當計器開機宣告後進入USER階層	SV 0.0								
按◀鍵至十位數閃爍	SV 00.0								
按▲鍵至顯示 5.(◎ ǚ ⅔ ⅔ ⅔ ≶)	SV 050.0								
按◀鍵至百位數閃爍	SV 050.0								
按▲鍵至顯示 2.(≬ ǚ Ž)	SV 250.0								
按 鍵 完 成SV值 輸 入	SV 250.0								

四、操作流程

4 1 USER 階層	翏	要	又 範	圄	1 説 1	川出席	ð值
按 [SET] 鍵可進入各個參數	OUTL	OUEL	0.0~100.0		輸出百分比	10)0
USER 階層之調整	AT	RE	YES/NO		自動演算功能指令	N	0
	AL1	RL I	0~100% FS		第一組警報設定	0.	0
雅般撮作完成SV值铅定	AL2	RL2	0~100% FS		第二組警報設定	0.	0
斑血沫下儿说3~ 值 00 亿	AL3	8: 3	0~100% FS		第三組鑿報設定	0.	0

-

- C. PID 自動演算(AT)
- 1. 出廠PV顯示AT, SV顯示NO模式中, 按 鍵SV值個位數閃爍
- 2. 按 ▲ 鍵SV值改顯示YES, S閃爍
- 3. 按 IET 鍵AT值指示燈亮,演算功能開始工作,當演算結束,SV值先 閃爍後自動停止AT指示燈滅,演算完成
- D.警報值設定(AL1~3)
- 1. 請依第三項SV設定功能之動作更改之
- 2. 進入INPUT階層,在ALD1參數中選擇所需之警報模示

4.2 PID 階層

由USER階層按 [SET] 鍵5秒,進入PID階層;再按[SET] 鍵進入各個參數。當P,改為0 時其他參數不顯示祇有P1,HYS1及LCK三個參數顯示。參數更改依第三項SV設定功 能之動作更改之。

參	ŧ	數範 圍	說	出廠值
P1	Ρ:	0~200%	第一組比例帶(%)設定0時為ON-OFF控制	3
I1	11	0~3600秒	第一組積分時間(秒)設定0時積分關閉	240
D1	d	0~900秒	第一組微分時間(秒)設定0時微分關閉	60
DB1	db	0~1000秒	DEAD TIME	100
ATVL	RE''L	0~USPL	自動演算 OFF set	0
CYT1	[35 1	0~150秒	第一組工作週期(秒)設定0為電流輸出,設定1為SSR	10
HYS1	XYS (0~1000	第一組輸出遲滯調整(NO-OFF控制之動作寬度)	0
P2	P2	0~200%	第二組比例帶(%)設定0時為ON-OFF控制	3
I2	· 2	0~3600秒	第二組積分時間(秒),設定0時積分關閉	240
D2	62	0~900秒	第二組微分時間(秒),設定0時微分關閉	60
CYT 2	[75]	0~150秒	第二組工作週期(秒)設定0為電流輸出,設定1為SSR	10
HYS2	XY52	0~1000	第二組輸出遲滯調整(ON-OFF控制之動作寬度)	0
GAP1	68P I	LSPL~USPL	第一組控制間隙(參考控制間隙說明)	0
GAP2	6892	LSPL~USPL	第二組控制間隙(參考控制間隙說明)	0
LCK	162	0000~1111	參數鎖定(參考LCK說明)	0000

4.3 INPUT 階層

從其他階層欲進入INPUT階層需先進入PID階層,將LCK鎖定模式參數設為0000,再 以雙手拇指各按 [SET] 鍵及 [◀] 鍵,同時按5秒即可進入,再按[SET] 鍵進入各個參數。

參	數		範圍	說 廠值
INP1	i nP l	K1-AN5	參見輸入選擇表	K2
ANL1	Ruf I	LSPL-USPL	主輸入信號(PV)低點調整(AN	1-AN5專用) 0
ANH1	8.41	0~9999	主輸入信號(PV)高點調整(AN	1-AN5專用) 5000
DP	d٩	0000-0.000	主輸入信號小數點位置調整(A	AN1-AN5專用) 000.0
LSPL	LSPL	-1999~9999	設定值最小範圍	0.0

參	數		範圍	說	廠值
USPL	USPL	-1999~9999	設定值最大範圍		400.0
ANL2	RnL2	LSPL-USPL	副輸入信號(SV)低點	沾調整	0
ANH2	RnH2	0~9999	副輸入信號(SV)高點	沾調整	5000
ALD1	ALG I	00-19	第一組警報模式	選擇	11
ALT1	ALE I	0~99.59(分)	段結束警報(程序控制 參見警報模式選擇表	∥專用) {代碼07	99.59
ALD2	RL d Z	00-19	第二組警報模式	選擇	0
ALT2	RLE2	0~99.59(分)	段結束警報(程序控制 參見警報模式選擇表	∥專用) 代碼07	99.59
ALD3	RLd3	00-19	第三組警報模式	選擇	0
ALT3	<i>RLŁ3</i>	0~99.59(分)	段結束警報(程序控制 參見警報模式選擇表	∥專用) 代碼07	99.59
HYSA	<i>к</i> уЅЯ	0~1000	警報遲滯調整(寬周	度調整)	0.0
CLO1	EL01	0~9999	第一組輸出零值電流調整(電流	充輸出型專用)	230
CHO1	C H O I	0~9999	第一組輸出最大值電流調整(電	流輸出型專用)	3600
CLO2	CL02	0~9999	第二組輸出零值電流調整(電流	充輸出型專用)	230
CHO2	C X 0 2	0~9999	第二組輸出最大值電流調整(電	流輸出型專用)	3600
CLO3	CL 0 3	0~9999	Transmitter 輸出化	氐值調整	0
CHO3	C H O 3	0~9999	Transmitter 輸出最	大值調整	5000
RUCY	rU[Y	0~150(秒)	馬達運轉時間設定(設定) 全閉到全開所需時間(三線式b	馬達閥) と例馬達専用)	5
WAIT	JR, E	0~100	等待(程序控制)專用0=	滴 等待	0.0
SETA					0000
ID.NO	, duO	0~100	通訊位置設定		1
BAUD	ьRUd	110~9600	通訊鮑率選擇		2400
SVOS	540S	-1000~1000	設定值補償		0.0
PVOS	P"05	-1000~USPL	常溫補正		0.0
UNIT	Uni E	F.C.A.	/ 切換		
SOFT	SOFE	0-5000	軟體濾波器		0.200
CASC	ERSE	0- ±1000	串列控制		0.0
OUD	DUJ	HEAT/COOL	加熱、冷卻模式選	墿	HEAT
OPAD	OPRd	PID	選擇PID控制		PID
HZ	H:	50/60週期	電源頻率選擇		60HZ

4.4 SET 階層

欲進入[SET]階層,需先進入PID階層,將LCK模式參數設定1111,再以 雙手拇指各按[SET]鍵及□◀□鍵,同時按5秒即可進入。

更改範例:

OUTL	= 1.1	ALT1	= 3.2	RUCY =
AT	= 1.2	ALD2	= 3.3	WAIT = \$ 5.3
AL1	= 1.3	ALT2	= 3.4	HYSM = J
AL2	= 1.4	ALD3	= 4.1	INDO = 154
AL3	= 2.1	ALT3	= 4.2	BAUD = $\int J.4$
ANL1	=)	HYSA	= 4.3	SVOS = 6.1
ANH1	= 2.2	CL01	=]	PVOS = 6.2
DP	= J	CH01	= 5 4.4	UNIT $= 6.3$
LSPL	=] 2 3	CL02	=] 5 1	SOFT = 6.4
USPL	= 1 2.3	CH02	= } .1	CASC = 7.1
ANL2	=] 2 4	CL03	=] = 2	OUD = 7.2
ANH2	= J ^{2.4}	CH03	= \$ 3.2	OPAD = 7.3
ALD1	= 3.1			HZ = 7.4

程序控制 SET8.1 { 0 = No Repeat 1 = Program Repeat SET8.3 { 0 = Start From 0 1 = Start From PV

傳送輸出 SET9.2 for TRS MV1 ; SET9.3 for TRS SV ; SET9.4 for TRS PV SET0.3 for REMOTE SV{ 0 = No Remote SV SET00.1=0 IS NON 0.1=1 IS TTI, COMMUNICATION SV OUTPUT SET00.2=0 IS RAMP 0.2=1 IS RATE FOR AL3 (ALd3=0)[see application 1] SET00.3=0 IS NON 0.3=1 IS REMOTE SV SET00.4=0 THE MOTOR VALVE CLOSE IS "b" OUT. 0.4=1 THE MOTOR VALVE CLOSE IS "a" OUT.

註一、自動演算:

- 1.AT設定為YES,自動演算功能即被設定
- 2. 演算開始AT指示燈亮,演算結束時SV值閃爍,AT指示燈 滅,微電腦將會重新設定P.I.D.值
- 3. ATVL為自動演算off set 之設定,設定方式為SV-ATVL= 演算數值,此種方式可防止演算過程中PV值超過設定點。(於Program時,演算數值=ATVL)

例如:SV設定200,ATVL設定5,演算數值即195

4. 自動演算失敗可能性有兩種:

(1) ATVL數值設定不合理(若無法確定ATVL之合適值可設定為"0") (2) 系統參數時間過長, PID值請改用手動設定

註二、控制間隙設定:

設定控制間隙主要作用在於位移實際控制點,以減少OUT1與OUT2 之能量相抵消

- 註三、LCK 模操作說明:
 - LCK=0000任何數值均可修改且可進入Input階層。
 - LCK=1111任何數值均可修改且可進入SET階層。
 - LCK=0100 只有USER階層及PID階層可修改,但無法進入Input階層 及SET階層。
 - LCK=0110 USER階層可修改, PID階層不可修改, 無法進入Input階 層及SET階層。
 - LCK=0001 USER階層可修改,(但AT,AL1-3除外),PID階層不可修 改,無法進入Input階層及SET階層。
 - LCK=0101所有階層皆不可修改,但LCK除外。

五、輸入選擇表:

參	數	範	肁
	21	0.0-200.0 /0.0-392.0	
К	23	0.0-400.0 /0.0-752.0	
	23	0-600 /0-1112	
	ĽЧ	0-800 /0-1472	
	25	0-1000 /0-1832	
	28	0-1200 /0-2192	
	11	0.0-200.0 /0.0-392.0	
	52	0.0-400.0 /0.0-752.0	
т	J3	0-600 /0-1112	
5	JЧ	0-800 /0-1472	
	JS	0-1000 /0-1832	
	JS	0-1200 /0-2192	
R	r l	0-1600 /0-2912	
ĸ	r2	0-1769 /0-3216	
S	51	0-1600 /0-2912	
5	52	0-1769 /0-3216	
В	61	0-1820 /0-3308	
Е	E 1	0-800 /0-1472	
Ľ	53	0-1000 /0-1832	
N	n 1	0-1200 /0-2192	
	~Z	0-1300 /0-2372	
	51	-199.9-400.0 /-199.9-752.0	
Т	23	-199.9-200.0 /-199.9-392.0	
	23	0.0-350.0 /0.0-662.0	
W	ū I	0-2000 /0-3632	
.,	ūΖ	0-2320 /0-4208	
PLII	PLI	0-1300 /0-2372	
r L II	PL2	0-1390 /0-2534	

參	數	範	肁
	U I	-199.9-600.0 /-199.9-999.9	
U	U2	-199.9-200.0 /-199.9-392.0	
	U 3	0.0-400.0 /0.0-752.0	1
т	L I	0-400 /0-752	1
L	L2	0-800 /0-1472	
	JP I	-199.9-600.0 /-199.9-999.9	
	JP2	-199.9-400.0 /-199.9-752.0	
JPT	JP 3	-199.9-200.0 /-199.9-392.0	
100	јРЧ	0-200 /0-392	
	JPS	0-400 /0-752	
	JP6	0-600 /0-1112	
	6P	-199.9-600.0 /-199.9-999.9	
	692	-199.9-400.0 /-199.9-752.0	
DPT 100	dРЗ	-199.9-200.0 /-199.9-392.0	
	брч	0-200 /0-392	
	dPS	0-400 /0-752	
	8P5	0-600 /0-1112	
	JP, I	-199.9-600.0 /-199.9-999.9	
	JP.Z	-199.9-400.0 /-199.9-752.0	
JPT	JP.3	-199.9-200.0 /-199.9-392.0	
50	јР,Ч	0-200 /0-392	
	JP.S	0-400 /0-752	
	J <i>P.</i> 6	0-600 /0-1112	
AN1	8n 1	-10-10mV/-1999-9999	
AN2	8~5	0-10mV/-1999-9999	
AN3	8~3	0-20mV/-1999-9999	
AN4	ጸлч	0-50mV/-1999-9999	
AN5	RnS	10-50mV/-1999-9999	
Other		0-20mA, 4-20mA, 0-1V, 0-5V, 1-5V 0-10V或其他任意電壓、電流	

六、單點斜率持溫控制:

斜率(RAMP)說定:功能開啟 1.進入SET階層,將2.1=1,4.1=1,0.2=0 2.進入INPUT階層,將ALD3=9

USER階層最後一個參數畫面顯示 PV **F R P** 功能開啟完成 SV 00.00

設定範圍00.00~99.59單位:度/每分鐘(設定00.00時,則該功能無效) 持渦(SOCK)設定:

進入 INPUT 階層將 ALD1或ALD2 = 19持溫畫面顯示: PV 設定範圍 00.00~99.59 單位:小數點前為(時) 小數點後為(分)

範例:SV=100 , RAMP=10.00 /每分鐘(即每分鐘增加) AL1=00.10分(即10分鐘持溫)

開機畫面宣告後,5秒時間SV進入RAMP功能(即SV值=PV值),SV 漸升而趨近100 ,其變化數率計算如下(如PV顯示20 則SV=PV 級,SV需增至100 所以SV需增加共80度,又因RAMP之設定為10 /每分鐘,所以共費時8分鐘,SV將增至為100),且PV也大於或 等於100 時進入SOCK功能,本錶計時開始,因AL1設定10分鐘, 當計時終了,AL1由OFF轉為ON輸出。主控制(OUT1)則持續加溫 100 。

八、微電腦程序控制設定:

開機後,顯示入力種類,溫度範圍、室溫(或爐內溫度)

設定、操作步驟如下:

1. 按[SET] 鍵 出現 OUEL 0.0 2. 按 ISET 鍵 出現 RE (PID自動演算選擇鍵) NO 3. 按 [SET] 鍵 出現 81 / 0 第一組警報值輸入(輸入執行段數) 4. 按 [SET] 鍵 出現 RL2 當一 0 4警報值輸入 5. 按 [SET] 鍵 出現 RL 3 0 第三組警報信輸入 6. 按 [SET] 鍵 出現 81-0 1 程控第一組(或第二組可選擇) 7. 按 [SET] 鍵 出現 5EG 1 - 0程控第一組中的第幾段(段數顯示) 8. 按 [SET] 鍵 出現 - ,每一段所剩餘時間 00.00 程控執行時 9. 按 SET 鍵 出現 5 !! / 00 程控第一組第一段控制輸入溫度值 10. 按SET 鍵 出現 と? (00.00 程控第一組第一段控制輸入時間值 11. 按 [SET] 鍵 出現 DUE / 100 第一組第一段控制出力百分比 12. 按ISET] 鍵出現 5^{1/2}. 2 00 第一組第二段控制輸入溫度值 13. 按 SET 鍵 出現 ト ?? 00.00 第一組第二段控制輸入時間值 14. 按[SET] 鍵出現 []]] - 2 第一組第二段控制出力百分比 100

15. 以下第三段到第八段操作方法同上述說明(第12~14項) 如果只要在第一組中使用二段時,那將第三段中的 GUL3 參數100改成 0.00即可,程控執行到第二段就會停止,不會執行第三段的輸出

□ 鍵啟動程控
□ 鍵暫停程控

]+[SET]為JMP功能,程控執行中,按下會跳下一段執行

程控,ALARM規劃:

若ALD1設定為07, AL1設定為2, ALT1設定為00.10, 則當程控執 行到第二段結束後, ALM1 Relay On 10 Sec

若ALD2設定為17,則程控執行終了,輸出將自動關閉,且PV Disp PV值-END交互顯示,提示程控執行結束,Alarm之Relav動作

MC Controller因無END指令,若程控設定不足8段時,請將下一個OUT設定為0,以代替END功能。當OUT設定不為0,則程控將持續執行到8段或16段 結束。Ptn = 0時,為兩組8段串連執行; Ptn = 1時,為第一組8段執行; Ptn =2時,為第二組8段執行。程控規劃前請先選擇:

PTN=1或2(規劃中不可設為0),以確定所規劃之程控為第一組或第二組。 PID自動演算之使用時機(在恒溫時段執行)

請先注意SV值(設定值)之規劃為多少,若最高為200,則在SV值數值上 升到100 以上(50%以上)才開始按下AT自動演算功能(將NO改成YES), AT燈會亮,算完後才熄滅,又恢復到NO狀態

新機試車時,此時設定溫度若低於100 以下,演算結果若不準確,跳段執 行,在100 以上一定會準,待關機後,第二次再執行時,已有PID值,低溫照 樣會準

進入[SET]之方法: 1. 按ISET不放手, 五秒後進入第二段程式 2.15ETT一下,一下按,直到LCK出現0000將其改成1111,再按5ET輸入 3.按住SET鏈不放手,再按 2.6位鏈一下,會進入第三段程式SETT一 数手,再按──移位鍵一下,會進入第三段程式<u>SET</u>一 找尋8.1-8.3,所需項目,更改再按<u>SET</u>輸入完成 _ 下按、 下 4. 按住ISET不放,按一下 移位鍵,跳回正常狀態 5. SET8.1=1為Program Repeat(程控重覆) SET8.2=0 為No Power Fail SET9.2=TRS MV1 SET8.2=1 為Power Fail SET9.3= TRS SV SET8.3=0 為0 開始(溫度顯示) SET9.4=TRS PV SET8.3=1 為PV 開始(溫度顯示) SET0.1=RS485 SV-0 配 線 TR ANS MISSION OR REMOTE SV ₩8 3 AC 85-2653 ി

十、錯誤訊息:

九.、

訊息	說	明
IN IE	第1組感測器斷線,極性反接或超出範圍	請檢查輸入訊號有無錯誤
3511	第2組感測器斷線,極性反接或超出範圍	請檢查輸入訊號有無錯誤
0001	第1組輸入訊號超過USPL	請檢查輸入範圍有否合理
nnn l	第1組輸入訊號低過LSPL	請檢查輸入範圍有否合理
0005	第2組輸入訊號超過USPL	請檢查輸入範圍有否合理
0002	第2組輸入訊號低過LSPL	請檢查輸入範圍有否合理
Rutf	自動演算失敗	請改用P.I.D.設定值
5 J E E	常溫補償失敉	請檢查常溫二極體配線是否正常
RGEE	A/D轉換器故障	請送修
r 828	記憶體失效	請送修

土 輸入信號變更

溫控器需要由TC或mV改RTD時,請依下圖所示,在PC板背面 將二處PAD點短路,反之,若要將RTD改為TC或mV時將PAD 點開路。

DC1020 DC1040

DC1030

DC1010

士、盤面開孔及外型尺寸:

UNIT:mm

Model	А	В	С	D	Е	F	G	Н	Ι
DC1010	$44.5^{+0.5}_{-0}$	$44.5^{+0.5}_{-0}$	65	70	50	50	80	17	97
DC1020	$44.5^{+0.5}_{-0}$	90.5 ^{+0.5} ₋₀	65	116	50	96	80	17	97
DC1030	$68.5_{-0}^{+0.5}$	$68.5^{+0.5}_{-0}$	89	94	74	74	80	17	97
DC1040	90.5 ^{+0.5}	90.5 ^{+0.5} ₋₀	111	116	96	96	80	17	97

